Looking for appropriate qualification conditions for subdifferential formulae and dual representations for convex risk measures

نویسندگان

  • Radu Ioan Bot
  • Alina-Ramona Fratean
چکیده

A fruitful idea, when providing subdifferential formulae and dual representations for convex risk measures, is to make use of the conjugate duality theory in convex optimization. In this paper we underline the outstanding role played by the qualification conditions in the context of different problem formulations in this area. We show that not only the meanwhile classical generalized interiority point ones come here to bear, but also a recently introduced one formulated by means of the quasi-relative interior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions

 We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...

متن کامل

Characterization of Properly Efficient Solutions for Convex Multiobjective Programming with Nondifferentiable vanishing constraints

This paper studies the convex multiobjective optimization problem with vanishing constraints‎. ‎We introduce a new constraint qualification for these problems‎, ‎and then a necessary optimality condition for properly efficient solutions is presented‎. ‎Finally by imposing some assumptions‎, ‎we show that our necessary condition is also sufficient for proper efficiency‎. ‎Our results are formula...

متن کامل

A new constraint qualification for the formula of the subdifferential of composed convex functions in infinite dimensional spaces

In this paper we work in separated locally convex spaces where we give equivalent statements for the formulae of the conjugate function of the sum of a convex lower-semicontinuous function and the precomposition of another convex lower-semicontinuous function which is also K-increasing with a K-convex K-epi-closed function, where K is a non-empty closed convex cone. These statements prove to be...

متن کامل

Two-Level Optimization Problems with Infinite Number of Convex Lower Level Constraints

‎This paper proposes a new form of optimization problem which is a two-level programming problem with infinitely many lower level constraints‎. ‎Firstly‎, ‎we consider some lower level constraint qualifications (CQs) for this problem‎. ‎Then‎, ‎under these CQs‎, ‎we derive formula for estimating the subdifferential of its valued function‎. ‎Finally‎, ‎we present some necessary optimality condit...

متن کامل

On Subdifferential Calculus for Convex Functions Defined on Locally Convex Spaces

The subdifferential formula for the sum of two convex functions defined on a locally convex space is proved under a general qualification condition. It is proved that all the similar results which are already known can be derivated from the formula.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Meth. of OR

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2011